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Overview

• Problem Statement

• Background/Setup

• ZigBee and Z-Wave Devices

• Methodology

• RF-DNA Fingerprinting Feature Generation

• GRLVQI Device Discrimination• GRLVQI Device Discrimination

• Dimensional Reduction Analysis (DRA)

• p-value vs Test Statistic DRA

• Results

• Classification and Verification Results

• Future Work

• Extend to Additional Classifiers

• Develop Additional DRA Methods for RF Fingerprinting
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Problem Statement

Investigate Suitability of p-

Values and Test Statistic Based 

Dimensional Reduction AnalysisDimensional Reduction Analysis

(DRA) Methods for Device 

Fingerprinting Using Radio

Frequency Distinct Native

Attribute (RF-DNA) Features.
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ZigBee Z-Wave

Standard IEEE Proprietary

Frequency 2.4 GHz 906 MHz 

Bit Rate 250 Kbits/s 40 Kbits/s

Security IEEE 802.15.4 Standard
None: 200 and 300 Series

Background

ZigBee & Z-Wave Devices

Security IEEE 802.15.4 Standard
AES 128: 400 Series

Latency 50 to 100 mSec ~1000 mSec

Range 10 to 100 m 30 to 100 m

Message Size (Bytes) 127 (max) 64 (max)
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Methodology
ZigBee Emission Processing [2, 13, 14]

ZigBee Experimental Collection Setup for LOS (A) & 

• Experimentally Collected 

ZigBee Emissions

• 10 Like-Model Devices

• Collection Environments

• CAGE – Anechoic Chamber

• LOS – Hallway Line-of-Sight (LOS)

• WALL – Through Wall Propagation
ZigBee Experimental Collection Setup for LOS (A) & 

WALL (B) Environment Emissions [19,54]

ZigBee Rogue Device ID and Collection 

Environments [19,54]

• WALL – Through Wall Propagation

• Authorized Devices

• Emissions Collected in CAGE, LOS, & 

WALL for 4 of 10 Devs (Dev 1 – Dev 4)

• NC = 4 Like-Model Auth Devs, Different 

Ser #s

• Rogue Devices

• NRog = 9 Like-Model Rogue Devs, 

Different Ser #s (Dev 5 – Dev 10)

• Emissions Collected in Selected 

Environments (See Table)
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Methodology

AFIT’s RF-DNA  Fingerprinting Process [7]
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Methodology
ZigBee Emission Processing [2, 13, 14] 

Non-Transformed

Instantaneous:
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Methodology
Device Classification: GRLVQI

• LVQ-Based Classifiers

• Gradient Descent & Prototype Vector (PV) 

Approach for Classification

• Gradient = 1st Derivative of Cost Function

• Iteratively Examines PV-to-Data Distances

• Correctly Classified PVs N Move Toward data 

• Incorrectly Classified PVs N Move Away From Data

• GRLVQI N LVQ Extension [2, 9, 14] LVQ Update 

Artificial Neural Net (ANN) Learning Vector Quant. (LVQ)

• GRLVQI N LVQ Extension [2, 9, 14]

• G = Generalized N Sigmoidal Cost Function

• R = Relevance N Gradient Descent Feature 

Relevance Ranking 

• I = Improved N Improved Logic, PV Freq, Add’l

Learn Rate, Etc. 

• No Explicit Assumption / Knowledge 

Required for Data Distribution (PDF)

• Appropriate PV Initialization Required

• Normal PVs ⇒⇒⇒⇒ Standardized Data

Cls 1
Cls 2

Cls 3

p3, j

8

LVQ Update [60,61]

GRLVQI
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Iteration 0

Iteration N
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Methodology
Dimensional Reduction Analysis (DRA)

• Method #1: (Distribution Based):  Two 

Sample Kolmogorov–Smirnov (KS) [13,14, 17]

• Method #2: (Distribution Based): ANOVA

F-Statistics
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• Method #3: (Classifier Based) GRLVQI 

Relevance [9] 

• Method #4: Dimensionality Assessment [18, 

21]
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Methodology
DRA: Dimensionality Assessment

• Selecting quantity of features in 

subsets non-trivial

• Qualitative DRA 

• Previously Considered [13,14]

• NDRA, ZigBee = [25, 50, 243]

• Quantitative DRA

• Introduced Here

SNR (DB) METHOD
SIGNIFICANCE LEVEL

0.1% 1% 5% 10%

0
F-TEST 196 264 350 402

KS-TEST (ΣP-VALUES) 37 74 130 160

10
F-TEST 589 639 674 688

KS-TEST (ΣP-VALUES) 337 414 512 557

18
F-TEST 706 713 720 722

KS-TEST (ΣP-VALUES) 666 692 711 716

F-TEST 718 725 727 728

ZigBee Dimensionality Assessment by Significance Level

• Introduced Here

• Removes Subjectively

• Intrinsic Data Dimensionality

• P-value and Data Eigenvalue 

methods considered

• P-values Overestimate Required 

NDRA

• Data Eigenvalue Methods Yield 

NDRA Consistent with Prior Work

• NDRA, ZigBee = [17, 123]

• NDRA, Z-wave = [7, 34]

30
F-TEST 718 725 727 728

KS-TEST (ΣP-VALUES) 727 729 729 729
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• The mapping between test statistic 

and p-value is typically nonlinear

• Simple F-Test Stat. [18]

• Complicated F-Test p-value [18]

Methodology
DRA: Test Statistics vs p-Values

• Recent RF-DNA DRA Research 

Focused on p-values for feature 

relevance ranking [1, 2, 13-14, 28-29]

• Test Statistic to p-Value Conversion 

Req’d

• Computing Test Statistic Values

• Ratio between quantities or a simple 

relationship 0.75 u 
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• The KS-test involves a similar 

nonlinear mapping [17]

relationship

• Test Statistics vs. P-Values

• p-Values Represent Area Under a 

Probability Curve

• Computing p-Values Requires [26]

1. Stated Hypothesis Test

2. Test Statistic Value

3. Degrees of Freedom

4. Distributional Assumption

5. Reference Distribution

(Not all are always considered / stated 

in DRA, e.g. [1, 2, 13, 14] )
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Methodology
ZigBee DRA: Test Statistics vs P-Values

p-values Test Statistic Values
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Methodology
ZigBee DRA: Test Statistics vs P-Values

p-values Test Statistic Values
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• With large datasets, p-values tend towards zero 

Hence resolution is lost when converting to p-values
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• Hence resolution is lost when converting to p-values

• Interpretation/procedural issues also remain 

• How to compare and rank equivalent values?
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• Test statistic methods offer comparable or better performance 

to p-value based methods 
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Results
Device Classification:  ZigBee & Z-Wave
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Results
Device ID Verification: ZigBee

• Based on “one vs one” claimed identity scenarios

• Presented as:

• %TVR  = True Verification Rate

• % RRR = Rogue Rejection Rate

• Bold Entry - Best or Statistically Equivalent Performance

DRA METHOD KS TEST STATISTIC KS ΣP-VALUE

NF 17 50 123 17 50 123

TVR 0% 0% 0% 0% 0% 0%TVR 0% 0% 0% 0% 0% 0%

RRR 8.33% 8.33% 0% 52.8% 2.78% 0%

DRA METHOD F TEST STATISTIC F TEST P-VALUE

NF 17 50 123 17 50 123

TVR 0% 0% 0% 25% 0% 0%

RRR 8.33% 5.56% 0% 38.9% 19.4% 0%

DRA METHOD GRLVQI

NF 17 50 123

TVR 25% 50% 50%

RRR 52.8% 66.7% 72.2%
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Results
Device ID Verification: ZigBee

• Based on “one vs one” claimed identity scenarios

• Presented as:

• %TVR  = True Verification Rate

• % RRR = Rogue Rejection Rate

• Bold Entry - Best or Statistically Equivalent Performance

DRA METHOD KS TEST STATISTIC KS ΣP-VALUE

NF 17 50 123 17 50 123

TVR 0% 0% 0% 0% 0% 0%TVR 0% 0% 0% 0% 0% 0%

RRR 8.33% 8.33% 0% 52.8% 2.78% 0%

DRA METHOD F TEST STATISTIC F TEST P-VALUE

NF 17 50 123 17 50 123

TVR 0% 0% 0% 25% 0% 0%

RRR 8.33% 5.56% 0% 38.9% 19.4% 0%

DRA METHOD GRLVQI

NF 17 50 123

TVR 25% 50% 50%

RRR 52.8% 66.7% 72.2%

• Distribution-based DRA offers poor verification 

performance with non-linear GRLVQI classifier
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Conclusions & Future Work

Conclusions

• Introduction of F-test for DRA in RF Fingerprinting

• Test Statistic Methods vs P-values

• P-values Susceptible to Converge on 0 [26]

• Test Statistic DRA Offers Robustness

• Introduction Quantitative Dimensionality Assessment• Introduction Quantitative Dimensionality Assessment
• NDRA = 123 (quantitative) better than NDRA = 243 (qualitative) of [14]

• Comparison of 5 DRA Methods for RF Fingerprinting

• First Look RF-DNA Fingerprinting Using Z-Wave Devices

Future Work

• Expand Z-Wave Assessments to Include Rogue Devices

• Reevaluate with an MDA-based classifier
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