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- ZigBee and Z-Wave Devices

 Methodology
« RF-DNA Fingerprinting Feature Generation
« GRLVAQI Device Discrimination
 Dimensional Reduction Analysis (DRA)
» p-value vs Test Statistic DRA
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» Classification and Verification Results

 Future Work

+ Extend to Additional Classifiers
* Develop Additional DRA Methods for RF Fingerprinting
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% Problem Statement AAFIT

The AFIT of Today is the Air Force of Tomorrow.

Investigate Suitability of p-
Values and Test Statistic Based
Dimensional Reduction Analysis

(DRA) Methods for Device

Fingerprinting Using Radio

Frequency Distinct Native

Attribute (RF-DNA) Features.
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ZigBee & Z-Wave Devices = 2 s mmiomons :

The AFIT of Today is the Air Force of Tomorrow.

LigBee WAVE 1\
Alliance ALLIANCE™
ZigBee Z-Wave
Standard IEEE Proprietary
Frequency 2.4 GHz 906 MHz
Bit Rate 250 Kbits/s 40 Kbits/s
. None: 200 and 300 Series
Security IEEE 802.15.4 Standard ,
AES 128: 400 Series
Latency 50 to 100 mSec ~1000 mSec
Range 10 to 100 m 30 to 100 m
Message Size (Bytes) 127 (max) 64 (max)
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% ZigBee Emission Processing [2, 13, 14] et v

« Experimentally Collected
ZigBee Emissions
* 10 Like-Model Devices

« Collection Environments
« CAGE - Anechoic Chamber
* LOS - Hallway Line-of-Sight (LOS)
« WALL - Through Wall Propagation

 Authorized Devices

 Emissions Collected in CAGE, LOS, &
WALL for 4 of 10 Devs (Dev 1 — Dev 4)

* N. =4 Like-Model Auth Devs, Different
Ser #s
 Rogue Devices

* Ngoy =9 Like-Model Rogue Devs,
Different Ser #s (Dev 5 — Dev 10)

 Emissions Collected in Selected
Environments (See Table)

The AFIT of Today is the Air Force of Tomorrow. "

e
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ZigBee Experimental Collection Setup for LOS (A) &
WALL (B) Environment Emissions [19,54]

ZigBee ID | CAGE | LOS

ZigBee Rogue Device ID and Collection
Environments [19,54]
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(A) Agilent E3238S (RFSICS)
(A) Nat’l Instruments (NI)
(B) Riscure Inspector

AFIT’s RF-DNA Fingerprinting Process [7]
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v ZigBee Emission Processing 2,13, 14] == :

The AFIT of Today is the Air Force of Tomorrow.

Time Domain (TD) RF-DNA Fingerprint Generation

ZigBee SHR Inst Amp Response

Non-Transformed
Instantaneous:
(a) Amplitude
(b) Phase
(c) Frequency

<—— (U) Region of Interest (ROl) ——

Arbitrary Feature Sequence

- Ng+1

o — Std Deviation
c? — Variance
v — Skewness

Kk — Kurtosis

> b ithRegion
FRZ. :|:Gi O; 7 Ki:|

1x4

Composite Fingerprint
[FRl Fy o iF, LMR

!

Fingerprints Input to
Classifier Model Development
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w* Device Classification: GRLVQI

« LVQ-Based Classifiers

* Gradient Descent & Prototype Vector (PV)
Approach for Classification

« Gradient = 1st Derivative of Cost Function

* Iteratively Examines PV-to-Data Distances
» Correctly Classified PVs ... Move Toward data
* Incorrectly Classified PVs ... Move Away From Data

Artificial Neural Net (ANN) Learning Vector Quant. (LVQ)

« GRLVAQI ... LVQ Extension [2, 9, 14] LVQ Update
* G = Generalized ... Sigmoidal Cost Function A
* R = Relevance ... Gradient Descent Feature Iteration 0 .

Relevance Ranking |

* | =Improved ... Improved Logic, PV Freq, Add’l
Learn Rate, Etc.

* No Explicit Assumption | Knowledge
Required for Data Distribution (PDF)
» Appropriate PV Initialization Required
 Normal PVs = Standardized Data Iteration N

<
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< Dimensional Reduction Analysis (DRA) === -

The AFIT of Today is the Air Force of Tomorrow.

* Method #1: (Distribution Based): Two
Sample Kolmogorov—-Smirnov (KS) [13,14, 17]

600 w w \ \ \ \ ‘
Amp ~ Phz  Freq

TN N -7

5001

KS = max([F,(x) - F,(x)| )
* Method #2: (Distribution Based): ANOVA £
F-Statistics [18] g o
5
F . MSFeature(i) 1001
"0 MSE |
Model (i)
S % RE Fingerprint Component 0
 Method #3: (Classifier Based) GRLVQI Amplitude (a) : ZigBee Feats #1 - #243
Relevance [9] Phase (¢) : ZigBee Feats #244 - #486

Frequency (f) : ZigBee Feats #487 - #729
* Method #4: Dimensionality Assessment [18,
21]
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N DRA: Dimensionality Assessment = — === :
The AFIT of Today is the Air Force of Tomorrow.

ZigBee Dimensionality Assessment by Significance Level

« Selecting quantity of features in
SIGNIFICANCE LEVEL

subsets non-trivial SNR (DB) METHOD 01% 1% | 5% 10%

* Qualitative DRA . F-TEST 196 264 350 402
. ] ] KS-TEST (XP-VALUES) 37 74 130 160
Previously Considered [13,14] i 0 T o o

* Npra, zigee = [25, 50, 243] 10 KS-TEST (SP-VALUES) 337 414 512 557

o Quantitative DRA 13 F-TEST 706 713 720 722
. Introd dH KS-TEST (XP-VALUES) 666 692 711 716
jeeTtced pere F-TEST 718 725 727 728

* Removes Subjectively 30 KS-TEST (XP-VALUES) 727 729 729 729

* Intrinsic Data Dimensionality

- P-value and Data Eigenvalue ZigBee Iz)lmensmnalltv Assessment by COV Eigenvalues

methods considered X E |
« P-values Overestimate Required 10" | —_—
- Data Eigenvalue Methods Yield £ :
Npr, Consistent with Prior Work |
* Nbra, ziggee = [17, 123] " Egzeiigfgalues \
* Nora, zuave = [T, 34] | e N\
10

100 200 300 400 500 600 700 800
Eigenvalues

S
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A DRA: Test Statistics vs p-Values =~ === “

The AFIT of Today is the Air Force of Tomorrow. Smmm——

« Recent RF-DNA DRA Research
Focused on p-values for feature
relevance ranking [1, 2, 13-14, 28-29]

» Test Statistic to p-Value Conversion

« The mapping between test statistic
and p-value is typically nonlinear

« Simple F-Test Stat. [18]

Req’d F _ MSFeature(i)
: ot "0 MSE
« Computing Test Statistic Values Model (i)
- Ratio between quantities or a simple + Complicated F-Test p-value [18]
relationship 075,

* Test Statistics vs. P-Values

» p-Values Represent Area Under a
Probability Curve 0.5

« Computing p-Values Requires [26]
1. Stated Hypothesis Test

H{utvYu [;]x[;]—l
flxluv)= ( 2 j(vj

Gl

P-value=AUC

2. Test Statistic Value 023

3. Degrees of Freedom

4. Distributional Assumption ol L—

5. Reference Distribution o 12 T?é:st gtatizﬁci,alze 5910
(Not all are always considered / stated  The KS-test involves a similar

in DRA, e.g. [1, 2, 13, 14] ) nonlinear mapping [17]
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ZigBee DRA
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F-test

Methodology

ZigBee DRA: Test Statistics vs P-Values

The AFIT of Today is the Air Force of Tomorrow.

p-values
1 :

730 dB
B3 dB

08— Bl 048
Bl dB

0.6 -

od]------------------- - -

} } } 30 dB

01 - . . ' /I8 dB|

: : - Il 104dB

0.08--- | 4: 7777777777 %7 o dB l

IR | ||| —— dmmmme- H ———————————
1]11]] T—— R

Test Statistic Values

* With large datasets, p-values tend towards zero

* Hence resolution is lost when converting to p-values
» Interpretation/procedural issues also remain
How to compare and rank equivalent values?

Vel &

04
F-Test Value

13



Ave Pct Correct

0.2
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Results

Device Classification: ZigBee & Z-Wave
The AFIT of Today is the Air Force of Tomorrow.

Test statistic methods offer comparable or better performance

to p-value based methods
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Results
Device ID Verification: ZigBee

The AFIT of Today is the Air Force of Tomorrow.

« Based on “one vs one” claimed identity scenarios
Presented as:

% TVR = True Verification Rate

* % RRR = Rogue Rejection Rate

« Bold Entry - Best or Statistically Equivalent Performance

DRA METHOD KS TEST STATISTIC KS 2P-VALUE
Ny 17 50 123 17 50 123
TVR 0% 0% 0% 0% 0% 0%
RRR 8.33% | 8.33% | 0% [|52.8% |2.78% | 0%
DRA METHOD F TEST STATISTIC F TEST P-VALUE
Np 17 50 123 17 50 123
TVR 0% 0% 0% 25% 0% 0%
RRR 8.33% | 5.56% | 0% ]138.9% | 19.4% | 0%
DRA METHOD GRLVOQI
Npg 17 50 123
TVR 25% | 50% | 50%
RRR 52.8% | 66.7% | 72.2%
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v Device ID Verification: ZigBee
The AFIT of Today is the Air Force of Tomorrow.

« Based on “one vs one” claimed identity scenarios

* Presented as:
« %TVR = True Verification Rate
* % RRR = Rogue Rejection Rate
« Bold Entry - Best or Statistically Equivalent Performance

DRA METHOD | KS TEST STATISTIC | KS XP-VALUE
Ny | 17 50 | 123 | 17 50 | 123

. Distribution-based DRA offers poor verification 2

performance with non-linear GRLVQI classifier Yo
LJINAY V1D 1 1IVD 1 11 O1ALIDIIU 1" 181 r-vALuULD
Ny 17 50 123 17 50 123
TVR 0% 0% 0% 25% 0% 0%
RRR 8.33% | 5.56% | 0% |38.9% | 19.4% | 0%
DRA METHOD GRLVOQI
Ng 17 50 123
TVR 25% | 50% | 50%

RRR 52.8% | 66.7% | 72.2%
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The AFIT of Today is the Air Force of Tomorrow.

Conclusions
* Introduction of F-test for DRA in RF Fingerprinting
» Test Statistic Methods vs P-values

« P-values Susceptible to Converge on 0 [26]

» Test Statistic DRA Offers Robustness

* Introduction Quantitative Dimensionality Assessment
* Npra =123 (quantitative) better than Ny, = 243 (qualitative) of [14]

« Comparison of 5 DRA Methods for RF Fingerprinting
* First Look RF-DNA Fingerprinting Using Z-Wave Devices

Future Work

 Expand Z-Wave Assessments to Include Rogue Devices
 Reevaluate with an MDA-based classifier
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