Air Force Institute of Technology

The AFIT of Today is the Air Force of Tomorrow.

Dimensional Reduction Analysis for Physical Layer Device Fingerprints with Application to ZigBee and Z-Wave Devices

U.S. AIR FORCE

Authors: Trevor J. Bihl Michael A. Temple Kenneth W. Bauer Benjamin Ramsey US Air Force Institute of Technology Wright-Patterson AFB OH

26-28 Oct 2015

- Problem Statement
- Background/Setup
 - ZigBee and Z-Wave Devices
- Methodology
 - RF-DNA Fingerprinting Feature Generation
 - GRLVQI Device Discrimination
 - Dimensional Reduction Analysis (DRA)
 - p-value vs Test Statistic DRA
- Results
 - Classification and Verification Results
- Future Work
 - Extend to Additional Classifiers
 - Develop Additional DRA Methods for RF Fingerprinting

Problem Statement

The AFIT of Today is the Air Force of Tomorrow.

Investigate Suitability of p-Values and Test Statistic Based **Dimensional Reduction Analysis** (DRA) Methods for Device **Fingerprinting Using Radio Frequency Distinct Native Attribute (RF-DNA) Features.**

Background

ZigBee & Z-Wave Devices

	ZigBee [®] Alliance	WAVE 11 Alliance ^m
	ZigBee	Z-Wave
Standard	IEEE	Proprietary
Frequency	2.4 GHz	906 MHz
Bit Rate	250 Kbits/s	40 Kbits/s
Saaurity	IEEE 902 15 1 Stondard	None: 200 and 300 Series
Security	IEEE 002.13.4 Stanuard	AES 128: 400 Series
Latency	50 to 100 mSec	~1000 mSec
Range	10 to 100 m	30 to 100 m
Message Size (Bytes)	127 (max)	64 (max)

• The AFIT of Today is the Air Force of Tomorrow.

- Experimentally Collected ZigBee Emissions
 - 10 Like-Model Devices
- Collection Environments
 - CAGE Anechoic Chamber
 - LOS Hallway Line-of-Sight (LOS)
 - WALL Through Wall Propagation
- Authorized Devices
 - Emissions Collected in CAGE, LOS, & WALL for 4 of 10 Devs (Dev 1 – Dev 4)
 - N_c = 4 Like-Model Auth Devs, Different Ser #s
- Rogue Devices
 - N_{Rog} = 9 Like-Model Rogue Devs, Different Ser #s (Dev 5 – Dev 10)
 - Emissions Collected in Selected Environments (See Table)

ZigBee Experimental Collection Setup for LOS (A) & WALL (B) Environment Emissions [19,54]

	ZieDee ID	CACE	1.05	WATT
	ZigBee ID	CAGE	LOS	WALL
	Dev5		Х	Х
ĥ	Dev6		Х	Х
	Dev7		Х	Х
	Dev8	X		
	Dev9	X		
	Dev10	X		

ZigBee Rogue Device ID and Collection Environments [19,54]

ZigBee Emission Processing [2, 13, 14]

The AFIT of Today is the Air Force of Tomorrow.

Time Domain (TD) RF-DNA Fingerprint Generation

Device Classification: GRLVQI

The AFIT of Today is the Air Force of Tomorrow.

- LVQ-Based Classifiers
 - Gradient Descent & Prototype Vector (PV) Approach for Classification
 - Gradient = 1st Derivative of Cost Function
 - Iteratively Examines PV-to-Data Distances
 - Correctly Classified PVs ... Move Toward data
 - Incorrectly Classified PVs ... Move Away From Data
- GRLVQI ... LVQ Extension [2, 9, 14]
 - G = Generalized ... Sigmoidal Cost Function
 - R = *Relevance* ... Gradient Descent Feature Relevance Ranking
 - I = *Improved* ... Improved Logic, PV Freq, Add'I Learn Rate, Etc.
- No Explicit Assumption / Knowledge Required for Data Distribution (PDF)
 - Appropriate PV Initialization Required
 - Normal PVs ⇒ Standardized Data

Artificial Neural Net (ANN)

Learning Vector Quant. (LVQ)

K-th PV

Methodology Dimensional Reduction Analysis (DRA)

The AFIT of Today is the Air Force of Tomorrow.

Method #1: (Distribution Based): Two
 Sample Kolmogorov–Smirnov (KS) [13,14, 17]

$$KS = max(|F_1(x) - F_2(x)|)$$

Method #2: (Distribution Based): ANOVA
 F-Statistics [18]

$$F_{0(i)} = \frac{MS_{Feature(i)}}{MSE_{Model(i)}}$$

- Method #3: (Classifier Based) GRLVQI Relevance [9]
- Method #4: Dimensionality Assessment [18, 21]

Amplitude (a) : ZigBee Feats #1 - #243 Phase (φ) : ZigBee Feats #244 - #486 **Frequency (f)** : ZigBee Feats #487 - #729

DRA: Dimensionality Assessment

The AFIT of Today is the Air Force of Tomorrow.

ZigBee Dimensionality Assessment by Significance Level

- Selecting quantity of features in subsets non-trivial
- Qualitative DRA
 - Previously Considered [13,14]
 - *N*_{DRA, ZigBee} = [25, 50, 243]
- Quantitative DRA
 - Introduced Here
 - Removes Subjectively
 - Intrinsic Data Dimensionality
- P-value and Data Eigenvalue methods considered
 - P-values Overestimate Required N_{DRA}
 - Data Eigenvalue Methods Yield
 N_{DRA} Consistent with Prior Work
 - *N*_{DRA, ZigBee} = [17, 123]
 - N_{DRA, Z-wave} = [7, 34]

SNR (DB)	Method	SIGNIFICANCE LEVEL				
	MILINOD	0.1%	1%	5%	10%	
0	F-TEST	196	264	350	402	
0	KS-TEST (Σ P-VALUES)	37	74	130	160	
10	F-TEST	589	639	674	688	
	KS-TEST (Σ P-VALUES)	337	414	512	557	
19	F-TEST	706	713	720	722	
18	KS-TEST (Σ P-VALUES)	666	692	711	716	
20	F-TEST	718	725	727	728	
30	KS-TEST (Σ P-VALUES)	727	729	729	729	

ZigBee Dimensionality Assessment by COV Eigenvalues

DRA: Test Statistics vs p-Values

The AFIT of Today is the Air Force of Tomorrow.

- Recent RF-DNA DRA Research Focused on p-values for feature relevance ranking [1, 2, 13-14, 28-29]
 - Test Statistic to p-Value Conversion Req'd
- Computing Test Statistic Values
 - Ratio between quantities or a simple relationship
- Test Statistics vs. P-Values
 - p-Values Represent Area Under a Probability Curve
- Computing p-Values Requires [26]
 - 1. Stated Hypothesis Test
 - 2. Test Statistic Value
 - 3. Degrees of Freedom
 - 4. Distributional Assumption
 - 5. Reference Distribution
 - (Not all are always considered / stated in DRA, e.g. [1, 2, 13, 14])

- The mapping between test statistic and *p*-value is typically nonlinear
- Simple F-Test Stat. [18]

$$F_{0(i)} = \frac{MS_{Feature(i)}}{MSE_{Model(i)}}$$

• Complicated F-Test p-value [18]

 The KS-test involves a similar nonlinear mapping [17]

Device Classification: ZigBee & Z-Wave

The AFIT of Today is the Air Force of Tomorrow.

 Test statistic methods offer comparable or better performance to p-value based methods

Results

Device ID Verification: ZigBee The AFIT of Today is the Air Force of Tomorrow.

- Based on "one vs one" claimed identity scenarios
- Presented as:
 - %TVR = True Verification Rate
 - % RRR = Rogue Rejection Rate
 - Bold Entry Best or Statistically Equivalent Performance •

DRA METHOD	KS TEST STATISTIC		KS	ΣP-VALU	JE	
N_F	17	50	123	17	50	123
TVR	0%	0%	0%	0%	0%	0%
RRR	8.33%	8.33%	0%	52.8%	2.78%	0%
DRA METHOD	F TEST STATISTIC			F TI	EST P-VAL	LUE
N_F	17	50	123	17	50	123
TVR	0%	0%	0%	25%	0%	0%
RRR	8.33%	5.56%	0%	38.9%	19.4%	0%
DRA METHOD		GRLVQI	[
N_F	17	50	123			
TVR	25%	50%	50%			
RRR	52.8%	66.7%	72.2%			

-

Results

Device ID Verification: ZigBee The AFIT of Today is the Air Force of Tomorrow.

- Based on "one vs one" claimed identity scenarios
- Presented as:
 - %TVR = True Verification Rate
 - % RRR = Rogue Rejection Rate
 - Bold Entry Best or Statistically Equivalent Performance •

DRA METHOD	KS TEST STATISTIC			KS	ΣP-VALU	JE	
N_F	17	50	123	17	50	123	
• Distribution-based DRA offers noor verification							
performance with non-linear GRI VQI classifier $\frac{100}{100}$							
	1 1	LIALG 167	5110	11 '1	EST P-VAL	LUE	
N_F	17	50	123	17	50	123	
TVR	0%	0%	0%	25%	0%	0%	
RRR	8.33%	5.56%	0%	38.9%	19.4%	0%	
DRA METHOD	GRLVQI						
N_F	17	50	123				
TVR	25%	50%	50%				
RRR	52.8%	66.7%	72.2%				

Conclusions & Future Work

The AFIT of Today is the Air Force of Tomorrow.

Conclusions

- Introduction of F-test for DRA in RF Fingerprinting
- Test Statistic Methods vs P-values
 - P-values Susceptible to Converge on 0 [26]
 - Test Statistic DRA Offers Robustness
- Introduction Quantitative Dimensionality Assessment
 - $N_{DRA} = 123$ (quantitative) better than $N_{DRA} = 243$ (qualitative) of [14]
- Comparison of 5 DRA Methods for RF Fingerprinting
- First Look RF-DNA Fingerprinting Using Z-Wave Devices

Future Work

- Expand Z-Wave Assessments to Include Rogue Devices
- Reevaluate with an MDA-based classifier

References

- [1] B. W. Ramsey, B. E. Mullins, R. Speers and K. A. Batterton, "Watching for weakness in wild WPANs," *Military Comm. Conf. (MILCOM),* pp. 1404-1409, 2013.
- [2] B. W. Ramsey, M. A. Temple and B. E. Mullins, "PHY foundation for multi-factor ZigBee node authentication," *IEEE Global Comm. Conf. (GLOBECOM)*, pp. 795-800, 2012.
- [3] Y. Zatout, "Using wireless technologies for healthcare monitoring at home: A survey," *Int. Conf. e-Health Networking, Applicat. and Services (Healthcom),* pp. 383-386, 2012.
- [4] J. Wright, "KillerBee: Practical ZigBee exploitation framework," in *11th ToorCon Conf.*, San Diego, 2009.
- [5] Y. Sheng, K. Tan, G. Chen, D. Kotz and A. Campbell, "Detecting 802.11 MAC layer spoofing using received signal strength," *27th Conf. on Comput. Comm.*, 2008.
- [6] B. Danev, D. Zanetti and S. Capkun, "On physical-layer identification of wireless devices," *ACM Computing Surveys*, vol. 45, no. 1, 2012.
- [7] W. E. Cobb, E. W. Garcia, M. A. Temple, R. O. Baldwin and Y. C. Kim, "Physical layer identification of embedded devices using RF-DNA fingerprinting," *Military Comm. Conf. (MILCOM)*, pp. 2168-2173, 2010.
- [8] M. D. Williams, M. A. Temple and D. R. Reising, "Augmenting bit-level network security using physical layer RF-DNA fingerprinting," *IEEE Global Comm. Conf. (GLOBECOM)*, pp. 1-6, 2010.
- [9] P. K. Harmer, D. R. Reising and M. A. Temple, "Classifier selection for physical layer security augmentation in Cognitive Radio networks," *IEEE Int. Conf. on Comm.(ICC)*, pp. 2846-2851, 2013.
- [10] T. Wu, J. Duchateau, J.-P. Martens and D. van Compernolle, "Feature subset selection for improved native accent identification," *Speech Comm.*, vol. 52, no. 2, pp. 83-98, 2010.

References

- [11] A.-C. Haury, P. Gestraud and J.-P. Vert, "The Influence of Feature Selection Methods on Accuracy, Stability and Interpretability of Molecular Signatures," *PLoS ONE*, vol. 6, no. 12, 2011.
- [12] T. Kind, V. Tolstikov, O. Fiehn and R. H. Weiss, "A comprehensive urinary metabolomic approach for identifying kidney cancer," *Analytical Biochemistry*, vol. 363, 2007.
- [13] C. K. Dubendorfer, B. W. Ramsey and M. A. Temple, "An RF-DNA verification process for ZigBee networks," *Military Comm. Conf. (MILCOM),* pp. 1-6, 2012.
- [14] C. K. Dubendorfer, B. W. Ramsey and M. A. Temple, "ZigBee device verification for securing industrial control and building automation systems," *Int. Conf. on Critical Infrastructure Protection* (IFIP13), vol. 417, pp. 47-62, 2013.
- [15] S. Prabhakar, S. Pankanti and A. K. Jain, "Biometric recognition: Security and privacy concerns," *IEEE Security and Privacy,* pp. 33-42, March/April 2003.
- [16] A. K. Jain, R. P. Duin and J. Mao, "Statistical Pattern Recognition: a Review," *IEEE Trans. on Pattern Anal. Mach. Intell.*, vol. 22, no. 1, pp. 4-37, Jan. 2000.
- [17] W. J. Conover, *Practical Nonparametric Statistics*, 2nd ed., New York: John Wiley & Sons, pp. 344-385, 1980.
- [18] W. R. Dillon and M. Goldstein, *Multivariate Analysis Methods and Applications*, New York: John Wiley & Sons, 1984.
- [19] J. D. Habbema and J. Hermans, "Selection of variables in discriminant analysis by F-statistic and error rate," *Technometrics,* vol. 19, no. 4, pp. 487-493, 1977.
- [20] M. Cowles and C. Davis, "On the Origins of the .05 Level of Statistical Significance," *Amer. Psychologist,* vol. 37, no. 5, pp. 553-558, 1982.

References

- [21] R. J. Johnson, J. P. Williams and K. W. Bauer, "AutoGAD: An improved ICA-based hyperspectral anomaly detection algorithm," *IEEE Trans. Geosci. Remote Sens.*, vol. 51, no. 6, pp. 3492-3503, 2013.
- [22] C. J. Huberty and J. M. Wisenbaker, "Variable importance in multivariate group comparisons," *J. of Education Stat.*, vol. 17, no. 1, pp. 75-91, 1992.
- [23] A. Cord, C. Ambroise and J.-P. Cocquerez, "Feature selection in robust clustering based on Laplace mixture," *Pattern Recognition Lett.*, vol. 27, no. 6, pp. 627-635, 2006.
- [24] P. Radivojac, Z. Obradovic, A. K. Dunker and S. Vucetic, "Feature selection filters based on the permutation test," *Mach. Learning: ECML 2004*, pp. 334-346, 2004.
- [25] K. Schmidt, T. Behrens and T. Scholten, "Instance selection and classification tree analysis for large spatial datasets in digital soil mapping," *Geoderma*, vol. 146, no. 1-2, pp. 138-146, 2008.
- [26] L. G. Halsey, D. Curran-Everett, S. L. Vowler and G. B. Drummond, "The fickle P value generates irreproducible results," *Nature Methods,* vol. 12, no. 3, pp. 179-185, 2015.