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ABSTRACT 

The mechanics of deployable space structures are examined through ground based testing to predict the 
structures’ deployment in a microgravity environment. In order to simulate the microgravity conditions a 
test article would experience in space, a method of counteracting the loads and deflections induced by 
gravity is required. This is accomplished through various gravity off-loading methods, which introduce 
forces opposite and equal to the force of gravity acting upon a test article throughout its deployment. 
Current gravity off-loading methods are passive rail-cart systems with their movement forced due to their 
physical coupling with a test article; this introduces unwanted boundary conditions, such as inertia and 
side-loading from a test article’s transverse movement. Therefore, an active gravity off-loading method is 
being developed that will deploy simultaneously with a test article. This method employs motorized carts 
with active position control based upon the lead angle of the off-loading cable. The maximum allowable 
lead angle is designed to be ±5°, with the intention of minimizing the forcing of the carts’ longitudinal 
deployment. System dynamics and kinematics analytical modeling is derived. Simulated system results 
from the analytical system model and preliminary results from the prototype are presented.     
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1. INTRODUCTION 
 
Ground testing is required to estimate the reliability of all equipment to be used in space. In testing 
deployable space structures, it is important to account for many structures being designed to meet the 
minimum strength and stiffness required of them in a microgravity environment; hence they can be unable 
to adequately support their own weight in a 1-g environment [1], [2]. For accurate ground testing of 
deployable space structures, a gravity off-loaded test environment that introduces a force equal and 
opposite to the gravitational force is required. The presence of an inadequately compensated gravitational 
force can alter the deployment characteristics during a test, as modal analysis of a test article can be overly 
corrupted from mass loading of over 5% of a test article mass [3].   
 
Currently, gravity off-loaded testing is accomplished through a variety of passive and active methods.  
Passive methods used in practice include balloons [3], neutral buoyancy simulation [4] and carts on a rail, 
which suspend a test article with counterweights. However, many of these methods cannot be employed 
without introducing mass loading to a test article, potentially corrupting the results of an experiment [3].  
For example, passive carts on a rail can introduce many unwanted affects, such as oscillations induced by a 
test article’s deployment dynamics, cart static friction or counterweight oscillations. Additionally, inertia 
equal to twice a test article’s mass can be added by the counterweight if there is any vertical deployment.   
 
Active methods, such as magnetic pneumatic suspension devices [3], can be used for accurate 1 degree of 
freedom (DOF) testing. Typically these methods would not introduce a mass loading force of over 5% [3], 
and therefore potentially avoid corrupting the modal analysis of a test deployment. However, there are size 
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and power requirements with magnetic-pneumatic suspension devices that make them difficult to use in 
testing structures such as trusses and booms that can deploy both horizontally and vertically.   
 
Given the limitations of currently available systems, an accurate active gravity off-loading system that 
supports 2 DOF testing is desirable. At the Air Force Research Laboratory’s Space Vehicles Directorate 
(AFRL/VS), such a system is currently under development and is currently in the prototyping stages. In 
addition to AFRL/VS personnel, system design is by CSA Engineering Inc., and engineering support is 
provided by Jackson & Tull Inc., and Ohio University. The active gravity off-loading system presented 
herein, see Figure 1, is designed to deploy in conjunction with a test article while providing constant active 
load support. The horizontal positioning is to be accomplished with the goal of minimizing the deflection 
angle of the off-loading cable, connected to points of a deployable space structure, while also minimizing 
the oscillations added to a test article from cart movement. Load support is to be accomplished with an 
active system, to reduce the magnitude of mass loading. 
 
Each cart’s horizontal movement is provided by a gear drive and each cart suspension is by three freely 
moving steel wheels, see Figure 1. Also highlighted in Figure 1 are the off-loading tether guide tube and 
deflection angle sensor. The deflection of the tether is measured by a full-bridge strain gauge sensor, 
mounted on the bending flexure, allowing the measuring of the angular deflection of the tether and tether 
guide tube in the ±5° range. The concept for the horizontal positioning, analytical system modeling and 
subsequent optimal controller development are presented in this paper. Preliminary results from testing of 
the prototype cart shown in Figure 1, and comparison with the analytical model are presented as well. 
 

 
Figure 1, Conceptual and Prototype Active Gravity Off-loading Cart 

 
2. SYSTEM DESCRIPTION AND MODELING 

 
The system under analysis was modeled with respect to the anticipated system dynamics and kinematics, 
see Figure 2. It is assumed that there will be i = 1, 2,…n carts acting upon the same structure for multiple, 
n, gravity off-loading points. Coupling between the carts through the test article is anticipated; however, the 
current system electronics are not planning on incorporating any inter-cart communication ability for 
design simplicity.        
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Figure 2, Individual Cart Dynamics and Kinematics 

 
By inspecting Figure 2 the kinematics of the cart are derived as  
 
 ixx ii

ˆ=
r  (1a) 

 ixv ii
ˆ&r

=  (1b) 

 .̂ixa ii &&
r
=  (1c) 
 

And the kinematics of the pendulum were derived as  
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where li represents the length of the pendulum and θi is the angular deflection of the pendulum on a cart.  
  
By inspection, the dynamics acting upon the cart based upon the free-body diagram, Figure 2, yield the 
following equations of motion 
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where, c

if is some coefficient of friction acting upon the movement of the cart from both the gear-tooth 
contact driving the cart and the wheels guiding the cart’s motion, hi is some force due to the spring constant 
of the spring steel hinge acting upon the rotational movement of the pendulum, g is the acceleration due to 
gravity and Mi is the mass of the cart assembly. 
 
By inspecting the forces acting upon the pendulum, a set of equations of motion for the pendulum can be 
derived  
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where mi is the point mass of the pendulum assembly attached to a uniformly thin bar of length li. 
 
It is assumed that the cross-product of the length of the pendulum and the force due to the spring constant 
of the spring steel hinge results is a k̂ -component force from the ith pendulum hinge through  
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where p

iκ is the ith pendulum hinge resistance to bending. However, in this case it is expected that there is a 
spring force acting upon the hinge due to simultaneous translation and deflection of the beam, causing 
different types of geometric deflections to occur simultaneously, behaving as both a cantilevered beam and 
bending from the torsion of a clamped-pinned beam [6]-[8]. However, only the bending of the hinge 
behaving as the torsion of a clamped-pinned beam was considered; this is due to the analysis being an 
approximation of the system with higher order effects ignored. Therefore, the force from the spring 
constant of the pendulum’s hinge are represented through 
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Applying Newton’s 2nd law to the cart and pendulum system yields the equations of motion 
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The equations of motion describing the system can then be reduced to 
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To create a set of linearized differential equations, θ is assumed to be in the range of -5° ≤ θ ≤ 5° with 
positive angles in the counter clockwise direction. This is the same range that the circuitry of the flexure 
angle sensor will provide, allowing this to be a reasonable linearization. Applying small angle 
approximation 
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for the system results in the following set of equations 
 

 i
i

i
i

c
i

i
i

i
i

i

i
i u

M
x

M
f

M
gm

M
h

x 1
+−+= &&& θθ

 
(10a) 

 .111 i
iiii

i
i

ii

c
i

i
i

i

i
i

i

i

ii

i
i w

lmlM
u

x
lM

f
M
m

l
g

M
m

lm
h

+−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−= &&& θθθ  (10b) 

 
 
Simplifying the above equations of motion by substituting the pendulum hinge spring constant equation 
yields 
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The state space representation of the system was derived to take into account disturbances to the system 
and all perceivable dynamics involved 

 
 iwiii wBBuAzz ++=&  (12) 

 
where 44 , ℜ∈ℜ∈ ii uz and 4ℜ∈iw are the state, input and disturbance vectors. The state space 
representation of the gravity off-loading system dynamics and kinematics were found to be  
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with the state vector assumed to be representative of the translational position and translational velocity of 
the cart and the angular position and angular velocity of the pendulum, or 
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3. LINEAR QUADRATIC GAUSSIAN CONTROLLER EQUATIONS 

 
A linear quadratic Gaussian (LQG) controller was developed due to the anticipation of random disturbance 
inputs on the flexure. LQG controllers are designed to take disturbances into account and LQG controllers 
do not assume that all states are known at all times. This is accomplished by designing a controller that 
consists of an optimal state feedback gain, in this case a linear quadratic regulator (LQR) gain, and a 
Kalman filter, for an optimal observer [9]. This gives the LQG controller more versatility when controlling 
a system that has various random disturbances, such as the system under consideration here, than other 
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optimal controllers such as the LQR would have. In this analysis the LQG controller was created through 
calculating the LQR compensator, calculating the Kalman filter gains and then combining the two to create 
an LQG compensator [9].  
 
An LQG controller assumes that the system being controlled has a general form 
 
 DwBuAxx ++=&  (19a) 
 vHwDuCxy +++=  (19b) 
 
where w is assumed to be a Gaussian random disturbance input and v is assumed to be some random 
disturbance in the measurement [9]. The LQR regulator gain matrix, K, component of the compensator is 
determined for 
 
 Kxu −=  (20) 

 
so that the quadratic cost function  
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can be minimized, with Q being a positive semi-definite state weighting matrix and R being a positive 
definite control effort penalizing matrix [9]. The weighting matrices determined through the minimum 
solution to the quadratic cost function were found by solving the Algebraic Riccati Equation for the matrix 
P 
 
 01 =+−+ − QPBPBRPAPA TT  (22) 

 
where P is assumed to be the positive definite [9]. The LQR gain is then calculated via the method from [9] 
 
 PBRK T1−=  (23) 
 
providing the weighting matrices for the state effort, Q, and input effort, R, are chosen through using 
discretion and balancing the tradeoffs between the inputs.    
 
To create the LQG compensator, a Kalman filter is needed to create the optimal observer part of the 
compensator [9]. Due to the presence of random disturbances, an estimated state equation will be used for 
deriving the Kalman filter portion of the compensator. The estimated state equations is therefore 
represented by 
 
 .ˆ)(ˆ LyBuxLCAx ++−=&  (24) 
 
Substituting in the output state equation yields 
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The optimal LQG feedback controller can then be obtained by substituting the estimated state x̂ for the state 
feedback controller design u=-Kx. Substituting the result into the estimated state equation results in 
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Grouping terms together yields 
 
 .ˆ)(ˆ LyxLDKLCBKAx ++−−=&  (27) 
 
By inspection, the LQG state matrix is defined as Ae = [A - BK - LC + LDK], the input matrix is defined as 
Be=L. The output matrix is defined as Ce=-K, and the feedthrough matrix is defined as 
De=[zeros(size(K),N)] [9]. 

4. SIMULATIONS AND RESULTS 
 

4.1 Analytical Cart Simulation Results 
 

To analyze the natural behavior of the system a simulation of the behavior of the cart to a random initial 
deflection angle of the flexure was considered, see Figure 3. The random deflection angle was considered as 
a Gaussian random distributed input, with a mean of zero, a variance of one, and a standard deviation of 
one. The result of this analysis indicates that the cart enters a limit cycle in the absence of control from the 
marginal stability of the system, from the presence of a pole at the origin [10], see Table 1.        
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Figure 3, Open Loop Response to a Random Initial Flexure Angle 

 
Table 1, Eigenvalues of the Uncompensated System 

0 
-0.0008 ± 12.1699i 

-0.0012 
 
Simulations involving the closed loop response of the compensated system were first analyzed with regard 
to the same initial conditions as used in the uncompensated case, Figure 4. By inspection the pendulum 
angle converges to zero following the deflection, and the system’s stability has been greatly improved. 
Responses are well within the desired pendulum angle range of ±5°.    
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Figure 4, LQG Compensated Response to Random Initial Conditions 
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Figure 5, LQG Compensated System Response to a Unit Step Input 

 
The step response of the LQG compensated system is shown in Figure 5. The response of the system is 
consistent with the system response to a random initial deflection angle and again well within the desired 
range. The stability of the system can be verified by observing the eigenvalues of the observer, see Table 2, 
and the eigenvalues of the LQG compensated system, see Table 3. Both tables show no positive real 
eigenvalues; additionally, the eigenvalues of the LQG compensated system have moved further negative in 
magnitude than in the uncompensated case, Table 1, confirming the system’s closed loop stability.   
 

Table 2, Eigenvalues of the LQG Observer 
-2739.4 -5.4 

-42.1 -2.2 
 

Table 3, Closed Loop Eigenvalues of the LQG Compensated System 
-1292.6 -1 -2.1±2.5i 
-186.7 -1 -2.5±2.3i 

 
4.2 Prototype Cart Results 

 
The prototype cart, Figure 1, was fabricated in 1st Quarter Fiscal Year 2007 after analyzing the behavior of 
the horizontal positioning of the conceptual model. The preliminary results of the horizontal positioning of 
the prototype  indicated a natural behavior similar to that of the analytical model. Currently, electronics for 
all sensors on the prototype have not been fabricated, the sensor flexure position being the only one 
available at this time, and therefore only knowledge about θ from (14) was known. Without knowledge of 
the cart position, it was impossible to implement the optimal control scheme above. This resulted in the 
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development of a single-input-single-output (SISO) proportional-plus-integrator (PI) controller being 
developed for proof of concept testing with flexure position as the input and the pulse width modulation 
(PWM) duty cycle of the horizontal position motor as the output. 
 
Testing the SISO PI controlled prototype cart after a disturbance input of approximately 3° was applied to 
the flexure, Figure 6, produced results similar to the natural behavior of the cart from a random input, 
Figure 3.  However, by observing the behavior of the cart, it was determined that the magnitude of static 
friction experienced by the cart and the spring constant of the flexure were both higher than previously 
estimated.  This resulted in the cart overshooting both the desired flexure angular position and the ±5° 
flexure sensor range, causing the cart to exhibit the oscillatory behavior seen in Figure 6.     
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Figure 6, PI Compensated Prototype System Response to a Disturbance Input 

 
Foam dampers were added to the prototype’s flexure to solve these problems with the outcome being a cart 
that can track a disturbance input to the flexure, Figure 7, with a settling time of approximately 0.75 
seconds. This is similar in magnitude of the settling time of the LQG controlled system, Figure 5; however, 
it should also be noted that the response of the cart with the SISO PI controller is significantly not as 
smooth as that provided by the optimal controller.           
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Figure 7, Damped PI Compensated Prototype Response to Disturbance Input 

 
5. CONCLUSIONS 

 
The system modeling, controller design, and verification for the horizontal positioning of a proposed active 
gravity off-loading system was presented. The system modeling took into account all anticipated dynamics 
and kinematics components in the gravity off-loading cart. The analysis of the model included situations 
that are consistent with the expected operating environment, such as introducing a random deflection of the 
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flexure and introducing a step input to the system. The result of this analysis shows a system that is 
marginally stable and will fall into a limit cycle in the absence of a controller. With the presented optimal 
control scheme, the system is able to meet the requirement of keeping the flexure deflection angle to within 
±5°.             
 
Comparisons with the preliminary results from the horizontal positioning controller of the prototype cart 
were presented as well. Although the controller used on the prototype was a PI controller instead of an 
optimal controller, comparisons on the behavior of the cart could be made. Also of note is that the 
electronics currently used on the prototype cart do not permit measurement of flexure angles outside a ±5° 
range and have a resolution of only 0.1°. This deviates significantly with the assumptions made in the 
analytical model, where full knowledge of the state variables was assumed. However, even with the PI 
controller, the cart was still controllable to within the ±5° range, but the response was not as smooth as with 
the conceptual optimal controller. When positioning sensor fabrication has been completed, the conceptual 
controller can be applied to the prototype for full system testing.    
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